Documentation

FormalConjectures.ErdosProblems.«887»

Erdős Problem 887 #

Reference: erdosproblems.com/887

theorem Erdos887.erdos_887 (C : ) :
C > 0∀ᶠ (n : ) in Filter.atTop, {dFinset.Ioo n n + C * n ^ (1 / 4) | d n}.card sorry

Is there an absolute constant $K$ such that, for every $C > 0$, if $n$ is sufficiently large then $n$ has at most $K$ divisors in $(n^{\frac{1}{2}}, n^{\frac{1}{2}} + C n^{\frac{1}{4}})$.

theorem Erdos887.erdos_887.variant_i :
∃ (K : ), C > 0, ∀ᶠ (n : ) in Filter.atTop, {dFinset.Ioo n n + C * n ^ (1 / 4) | d n}.card K

Is there an absolute constant $K$ such that, for every $C > 0$, if $n$ is sufficiently large then $n$ has at most $K$ divisors in $(n^{\frac{1}{2}}, n^{\frac{1}{2}} + C n^{\frac{1}{4}})$.

theorem Erdos887.erdos_887.variant_ii :
Infinite {n : | {dFinset.Ioo n n + n ^ (1 / 4) | d n}.card = 4}

A question of Erdős and Rosenfeld, who proved that there are infinitely many $n$ with $4$ divisors in $(n^{\frac{1}{2}}, n^{\frac{1}{2}} + n^{\frac{1}{4}})$.

theorem Erdos887.erdos_887.variant_iii :
IsGreatest {K : | Infinite {n : | {dFinset.Ioo n n + n ^ (1 / 4) | d n}.card = K}} 4

Erdős and Rosenfeld, ask whether $4$ is the best possible $K$ for the infinitude of $n$ with $K$ divisors in $(n^{\frac{1}{2}}, n^{\frac{1}{2}} + n^{\frac{1}{4}})$.