Documentation

FormalConjectures.ErdosProblems.«885»

Erdős Problem 885 #

References:

For integer $n \geq 1$ we define the factor difference set of $n$ by $D(n) = \{|a-b| : n=ab\}$.

Equations
Instances For
    theorem Erdos885.erdos_885 :
    sorry k1, ∃ (Ns : Finset ), (∀ nNs, 1 n) Ns.card = k (⋂ nNs, factorDifferenceSet n).ncard k

    Is it true that, for every $k \geq 1$, there exist integers $N_1 < \dots < N_k$ such that $|\cap_i D(N_i)| \geq k$?

    theorem Erdos885.erdos_885.variants.k_eq_2 :
    ∃ (Ns : Finset ), (∀ nNs, 1 n) Ns.card = 2 (⋂ nNs, factorDifferenceSet n).ncard 2

    Erdős and Rosenfeld [ErRo97] proved this is true for $k=2$.

    theorem Erdos885.erdos_885.variants.k_eq_3 :
    ∃ (Ns : Finset ), (∀ nNs, 1 n) Ns.card = 3 (⋂ nNs, factorDifferenceSet n).ncard 3

    Jiménez-Urroz [Ji99] proved this for $k=3$.

    theorem Erdos885.erdos_885.variants.k_eq_4 :
    ∃ (Ns : Finset ), (∀ nNs, 1 n) Ns.card = 4 (⋂ nNs, factorDifferenceSet n).ncard 4

    Bremner [Br19] proved this for $k=4$.