Documentation

FormalConjectures.ErdosProblems.«859»

Erdős Problem 859 #

Reference: erdosproblems.com/859

DivisorSumSet t is the set of natural numbers n such that t can be represented as a sum of distinct divisors of n.

Equations
Instances For
    theorem Erdos859.erdos_859.variants.erdos_upper_lower_bounds :
    c₃ > 0, c₄ > 0, ∃ (t₀ : ), ∀ᶠ (t : ) in Filter.atTop, ∃ (dₜ : ), (DivisorSumSet t).HasDensity dₜ 1 / Real.log t ^ c₃ < dₜ dₜ < 1 / Real.log t ^ c₄

    A weaker version of the problem proved by Erdos: The density dₜ of DivisorSumSet (t : ℕ) is bounded from below by 1 / log (t) ^ c₃ and from above by 1 / log (t) ^ c₄ for some positive constants c₃ and c₄.

    theorem Erdos859.erdos_859 :
    c₁ > 0, c₂ > 0, ∃ (d : ), (∀ t > 0, (DivisorSumSet t).HasDensity (d t)) Asymptotics.IsEquivalent Filter.atTop (fun (t : ) => d t) fun (t : ) => c₁ / Real.log t ^ c₂