Documentation

FormalConjectures.ErdosProblems.«845»

Erdős Problem 845 #

Reference: erdosproblems.com/845

theorem erdos_845 (C : ) (hC : 0 < C) :
let f := fun (x : × ) => match x with | (k, l) => 2 ^ k * 3 ^ l; {x : | ∃ (B : Finset ( × )) (h : B.Nonempty) (_ : (B.sup f) C * (B.inf' h f)), xB, f x = x}.HasDensity 0 sorry

Let $C > 0$. Is it true that the set of integers of the form $n = b_1 + \cdots + b_t$, with $b_1 < \cdots < b_t$, where $b_i = 2^{k_i}3^{l_i}$ for $1 \leq i\leq t$ and $b_t \leq Cb_1$ has density $0$?