Documentation

FormalConjectures.ErdosProblems.«830»

Erdős Problem 830 #

Reference: erdosproblems.com/830

structure Erdos830.IsAmicable (a b : ) :

We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$.

Instances For
    @[reducible, inline]
    noncomputable abbrev Erdos830.A (x : ) :

    Let $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$.

    Equations
    Instances For

      Erdos Problem 830, Part 1 We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. Are there infinitely many amicable pairs?

      theorem Erdos830.erdos_830.parts.ii :
      (∃ (o : ), o =o[Filter.atTop] 1 ∀ᶠ (x : ) in Filter.atTop, x ^ (1 - o x) < A x) sorry

      Erdos Problem 830, Part 2 We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. If $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$ then is it true that [A(x) > x^{1-o(1)}?]

      We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. If $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$ then one can show that $A(x) = o(x)$.

      We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. If $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$ then one can show that $A(x) \leq x \exp(-(\log x)^{1/3})$.

      We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. If $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$ then one can show that $A(x) \leq x \exp(-(\tfrac{1}{2}+o(1))(\log x\log\log x)^{1/2})$.