Erdős Problem 830 #
Reference: erdosproblems.com/830
We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$.
Instances For
Let $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$.
Equations
- Erdos830.A x = ↑(Finset.filter (fun (x : ℕ × ℕ) => match x with | (a, b) => a ≤ b ∧ Erdos830.IsAmicable a b) (Finset.Icc 1 ⌊x⌋₊ ×ˢ Finset.Icc 1 ⌊x⌋₊)).card
Instances For
Erdos Problem 830, Part 2 We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. If $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$ then is it true that [A(x) > x^{1-o(1)}?]
We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. If $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$ then one can show that $A(x) = o(x)$.
We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. If $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$ then one can show that $A(x) \leq x \exp(-(\log x)^{1/3})$.
We say that $a,b\in \mathbb{N}$ are an amicable pair if $\sigma(a)=\sigma(b)=a+b$. If $A(x)$ counts the number of amicable $1\leq a\leq b\leq x$ then one can show that $A(x) \leq x \exp(-(\tfrac{1}{2}+o(1))(\log x\log\log x)^{1/2})$.