Documentation

FormalConjectures.ErdosProblems.«828»

Erdős Problem 828 #

Reference: erdosproblems.com/828

theorem Erdos828.erdos_828 :
(∀ (a : ), {n : | n.totient n + a}.Infinite) sorry

Is it true that, for any $a \in \mathbb{Z}$, there are infinitely many $n$ such that $$\phi(n) | n + a$$?

When $n > 1$, Lehmer conjectured that $\phi(n) | n - 1$ if and only if $n$ is prime.

theorem Erdos828.erdos_828.variants.phi_dvd_self_iff_pow2_pow3 {n : } (hn : 1 > n) :
n.totient n a > 0, ∃ (b : ), n = 2 ^ a * 3 ^ b

It is an easy exercise to show that, for $n > 1$, $\phi(n) | n$ if and only if $n = 2^a 3^b$.