Documentation

FormalConjectures.ErdosProblems.«817»

Erdős Problem 817 #

Reference: erdosproblems.com/817

noncomputable def Erdos817.g (k n : ) :

Define $g_k(n)$ to be the minimal $N$ such that $\{1, ..., N\}$ contains some $A$ of size $|A| = n$ such that $$ \langle A\rangle = \left\{\sum_{a \in A} \epsilon_a a : \epsilon_a \in\{0, 1\}\right\} $$ contains no non-trivial $k$-term arithmetic progression.

Equations
Instances For
    theorem Erdos817.erdos_817 :
    ((fun (n : ) => 3 ^ n) =O[Filter.atTop] fun (n : ) => (g 3 n)) sorry

    Let $k\geq 3$. Define $g_k(n)$ to be the minimal $N$ such that $\{1, ..., N\}$ contains some $A$ of size $|A| = n$ such that $$ \langle A\rangle = \left\{\sum_{a \in A} \epsilon_a a : \epsilon_a \in\{0, 1\}\right\} $$ contains no non-trivial $k$-term arithmetic progression. Estimate $g_k(n)$. In particular, is it true that $$ g_3(n) \gg 3^n $$

    theorem Erdos817.erdos_817.variants.bdd_power :
    O > 0, (fun (n : ) => 3 ^ n / n ^ O) =O[Filter.atTop] fun (n : ) => (g 3 n)

    A problem of Erdős and Sárközy who proved $$ g_3(n) \gg \frac{3^n}{n^{O(1)}}. $$