Documentation

FormalConjectures.ErdosProblems.«817»

Erdős Problem 817 #

Reference: erdosproblems.com/817

def IsFiniteAPWith (k d : ) (s : Set ) :

A finite arithmetic progression of length $k$ and difference $d$ is a set of the form $\{a_0, a_0 + d, a_0 + 2d, ..., a_0 + (k - 1) d\}$.

Equations
Instances For
    theorem IsFiniteAP.zero {d : } {s : Set } :

    Only the empty set is a finite arithmetic progression of length $0$.

    theorem IsFiniteAP.one {d : } {s : Set } :
    IsFiniteAPWith 1 d s ∃ (a₀ : ), s = {a₀}

    Only singletons are finite arithmetic progressions of length $1$.

    theorem IsFiniteAP.zero_diff {k : } [NeZero k] {s : Set } :
    IsFiniteAPWith k 0 s ∃ (a₀ : ), s = {a₀}

    Only singletons are finite arithmetic progressions of difference $0$.

    A set $s$ contains a non-trivial $k$-term, if there is a difference $d$ such that $s$ is a $k$-term progression with that difference and it contains more than 1 element.

    Equations
    Instances For
      noncomputable def g (k n : ) :

      Define $g_k(n)$ to be the minimal $N$ such that $\{1, ..., N\}$ contains some $A$ of size $|A| = n$ such that $$ \langle A\rangle = \left\{\sum_{a \in A} \epsilon_a a : \epsilon_a \in\{0, 1\}\right\} $$ contains no non-trivial $k$-term arithmetic progression.

      Equations
      Instances For
        theorem erdos_817 :
        ((fun (n : ) => 3 ^ n) =O[Filter.atTop] fun (n : ) => (g 3 n)) sorry

        Let $k\geq 3$. Define $g_k(n)$ to be the minimal $N$ such that $\{1, ..., N\}$ contains some $A$ of size $|A| = n$ such that $$ \langle A\rangle = \left\{\sum_{a \in A} \epsilon_a a : \epsilon_a \in\{0, 1\}\right\} $$ contains no non-trivial $k$-term arithmetic progression. Estimate $g_k(n)$. In particular, is it true that $$ g_3(n) \gg 3^n $$

        theorem erdos_817.variants.bdd_power :
        O > 0, (fun (n : ) => 3 ^ n / n ^ O) =O[Filter.atTop] fun (n : ) => (g 3 n)

        A problem of Erdős and Sárközy who proved $$ g_3(n) \gg \frac{3^n}{n^{O(1)}}. $$