Documentation

FormalConjectures.ErdosProblems.«786»

Erdős Problem 786 #

Reference: erdosproblems.com/786

def Set.IsMulCardSet {α : Type u_1} [CommMonoid α] (A : Set α) :

Nat.IsMulCardSet A means that A is a set of natural numbers that satisfies the property that $a_1\cdots a_r = b_1\cdots b_s$ with $a_i, b_j\in A$ can only hold when $r = s$.

Equations
Instances For
    theorem erdos_786.parts.i :
    (∀ ε > 0, ε 1∃ (A : Set ) (δ : ), 0A 1 - ε < δ A.HasDensity δ A.IsMulCardSet) sorry

    Let $\epsilon > 0$. Is there some set $A\subset\mathbb{N}$ of density $> 1 - \epsilon$ such that $a_1\cdots a_r = b_1\cdots b_s$ with $a_i, b_j\in A$ can only hold when $r = s$?

    theorem erdos_786.parts.ii :
    (∃ (A : Set ) (f : ) (_ : Filter.Tendsto f Filter.atTop (nhds 0)), ∀ (N : ), A N Set.Icc 1 (N + 1) (1 - f N) * N (A N).ncard (A N).IsMulCardSet) sorry

    Is there some set $A\subset\{1, ..., N\}$ of size $\geq (1 - o(1))N$ such that $a_1\cdots a_r = b_1\cdots b_s$ with $a_i, b_j\in A$ can only hold when $r = s$?

    theorem erdos_786.parts.i.example (A : Set ) (hA : A = {n : | n % 4 = 2}) :

    An example of such a set with density $\frac 1 4$ is given by the integers $\equiv 2\pmod{4}$

    def consecutivePrimes {k : } (p : Fin k.succ) :

    consecutivePrimes p asserts that p is a strictly increasing finite sequences of consecutive primes.

    Equations
    Instances For
      theorem erdos_786.parts.i.selfridge (ε : ) (hε : 0 < ε ε 1) :
      ∃ (k : ), ∀ᶠ (p : Fin (k + 2)) in Filter.atTop, consecutivePrimes p iFinset.filter (fun (x : Fin (k + 1 + 1)) => x < Fin.last (k + 1)) Finset.univ, 1 / (p i) < 1 1 < i : Fin (k + 2), 1 / (p i){n : | ∃! i : , i < k p i n}.HasDensity (1 / Real.exp 1 - ε) {n : | ∃! i : , i < k p i n}.IsMulCardSet

      Let $\epsilon > 0$ be given. Then, for a sequence of sufficiently large consecutive primes $p_1 < \cdots < p_k$ such that $$ \sum_{i=1}^k \frac{1}{p_i} < 1 < \sum_{i=1}^{k + 1} \frac{1}{p_i}, $$ the set $A$ of all naturals divisible by exactly one of $p_1, ..., p_k$ has density $1 / e - \epsilon$ and has the property that $a_1\cdots a_r = b_1\cdots b_s$ with $a_i, b_j\in A$ can only hold when $r = s$.