Documentation

FormalConjectures.ErdosProblems.«730»

Erdős Problem 730 #

Reference: erdosproblems.com/730

theorem erdos_730 :

Are there infinitely many pairs of integers $n ≠ m$ such that $\binom{2n}{n}$ and $\binom{2m}{m}$ have the same set of prime divisors?

For example, $(87,88)$ and $(607,608)$ are such pairs.

theorem erdos_730.variants.two_div_forall (n : ) (h : 0 < n) :
2 (2 * n).choose n

Show that for all $n$, the binomial coefficient $\binom{2n}{n}$ is even.

theorem erdos_730.variants.succ_pair_criterion (n : ) (h : 2 < n) :
(n, n + 1) S✝ pSet.Ioc 2 n, ∀ [hp : Fact (Nat.Prime p)], let kummer_condition := fun (n : ) => List.Forall (fun (m : ) => m (p - 1) / 2) (p.digits n); kummer_condition n kummer_condition (n + 1)

Show that $(n, n+1) ∈ S$ if and only if for all odd primes $p ≤ n$ both the base $p$ representations of $n$ and $n+1$ either both have all digits less or equal to $(p-1)/2$ or both don't.

Note: currently there is stronger, but potentially false formulation of this criterion on erdosproblems.com.

theorem erdos_730.variants.succ_pair_growth :
let C := fun (x : ) => (Finset.filter (fun (n : ) => (n, n + 1) S✝) (Finset.Icc 0 x⌋₊)).card; Filter.Tendsto (fun (x : ) => x / Real.log x ^ 2 / C x) Filter.atTop (nhds 0)

Standard heuristics then predict there should be $≫ \frac x {(\log x)^2}$ many $n ≤ x$ such that $(n, n+1) ∈ S$.