Documentation

FormalConjectures.ErdosProblems.«728»

Erdős Problem 728 #

Reference: erdosproblems.com/728

theorem Erdos728.erdos_728 :
∀ᶠ (ε : ) in nhdsWithin 0 (Set.Ioi 0), C > 0, C' > C, ∃ (a : ) (b : ) (n : ), 0 < n ε * n < a ε * n < b a.factorial * b.factorial n.factorial * (a + b - n).factorial a + b > n + C * Real.log n a + b < n + C' * Real.log n

Let $\varepsilon$ be sufficiently small and $C, C' > 0$. Are there integers $a, b, n$ such that $$a, b > \varepsilon n\quad a!\, b! \mid n!\, (a + b - n)!, $$ and $$C \log n < a + b - n < C' \log n ?$$

Note that the website currently displays a simpler (trivial) version of this problem because $a + b$ isn't assumed to be in the $n + O(\log n)$ regime.