Documentation

FormalConjectures.ErdosProblems.«728»

Erdős Problem 728 #

Reference: erdosproblems.com/728

theorem Erdos728.erdos_728 :
(∀ (ε C : ), 0 < ε0 < C∃ (a : ) (b : ) (n : ), ε * n < a ε * n < b a.factorial * b.factorial n.factorial * (a + b - n).factorial a + b > n + C * Real.log n) sorry

Let $\varepsilon, C > 0$. Are there integers $a, b, n$ such that $$a > \varepsilon n,\quad b > \varepsilon n, \quad a!\, b! \mid n!\, (a + b - n)!, $$ and $$ a + b > n + C \log n ?$$