Erdős Problem 728 #
Reference: erdosproblems.com/728
Let $\varepsilon, C > 0$. Are there integers $a, b, n$ such that $$a > \varepsilon n,\quad b > \varepsilon n, \quad a!\, b! \mid n!\, (a + b - n)!, $$ and $$ a + b > n + C \log n ?$$
Reference: erdosproblems.com/728
Let $\varepsilon, C > 0$. Are there integers $a, b, n$ such that $$a > \varepsilon n,\quad b > \varepsilon n, \quad a!\, b! \mid n!\, (a + b - n)!, $$ and $$ a + b > n + C \log n ?$$