theorem
Erdos723.erdos_732
{P L : Type}
[Membership P L]
:
(∀ (pp : Configuration.ProjectivePlane P L), IsPrimePow (Configuration.ProjectivePlane.order P L)) ↔ sorry
If there is a finite projective plane of order $n$ then must $n$ be a prime power?
theorem
Erdos723.erdos_732.prime_pow_is_projplane_order
{P L : Type}
[Membership P L]
(n : ℕ)
:
IsPrimePow n → ∃ (pp : Configuration.ProjectivePlane P L), Configuration.ProjectivePlane.order P L = n
These always exist if $n$ is a prime power.
theorem
Erdos723.erdos_732.leq_11
{P L : Type}
[Membership P L]
(pp : Configuration.ProjectivePlane P L)
:
This conjecture has been proved for $n \leq 11$.
theorem
Erdos723.bruck_ryser
{P L : Type}
[Membership P L]
(n : ℕ)
(pp : Configuration.ProjectivePlane P L)
(hpp : Configuration.ProjectivePlane.order P L = n)
:
Bruck and Ryser have proved that if $n \equiv 1 (\mod 4)$ or $n \equiv 2 (\mod 4)$ then $n$ must be the sum of two squares.