Documentation

FormalConjectures.ErdosProblems.«699»

Erdős Problem 699 #

Reference: erdosproblems.com/699

theorem Erdos699.sylvester_schur (n i : ) (hi : 1 i) (hi_half : i n / 2) :
∃ (p : ), Nat.Prime p i < p p n.choose i

Sylvester and Schur: for $1 \le i \le n/2$ there is a prime $p > i$ dividing n.choose i.

theorem Erdos699.erdos_699 :
sorry ∀ (n i j : ), 1 ii < jj n / 2∃ (p : ), Nat.Prime p i p p (n.choose i).gcd (n.choose j)

Erdős Problem 699. Is it true that for every $1 \le i < j \le n / 2$ there exists a prime $p \ge i$ with $p \mid \gcd\big(\binom{n}{i}, \binom{n}{j}\big)$?

theorem Erdos699.erdos_szekeres_strengthening :
sorry ∃ (E : Finset ( × × )), ∀ (n i j : ), 1 ii < jj n / 2(n, i, j)E∃ (p : ), Nat.Prime p i < p p (n.choose i).gcd (n.choose j)

Erdős and Szekeres conjectured that, apart from a finite exceptional set of triples (n, i, j), one can always take p > i in the prime divisor statement.