Documentation

FormalConjectures.ErdosProblems.«697»

Erdős Problem 697 #

Reference:

theorem Erdos697.density_exists (m : ) (α : ) :
∃ (δ : ), {n : | ∃ (d : ), d 1 [MOD m] d Set.Ioo 1 (Real.exp (m ^ α)) d n}.HasDensity δ

For each $m$ and $\alpha$, the density of the set of integers which are divisible by some $d \equiv 1 \pmod{m}$ with $1 < d < \exp (m ^ \alpha)$ exists.

noncomputable def Erdos697.δ (m : ) (α : ) :

For each $m$ and $\alpha$, $\delta (m, \alpha)$ is the density of the set of integers which are divisible by some $d \equiv 1 \pmod{m}$ with $1 < d < exp (m ^ \alpha)$ exists.

Equations
Instances For
    theorem Erdos697.erdos_697.delta_lt (m : ) (α : ) :
    δ m α < (m ^ α + 1) / m

    $\delta < \frac{m ^ \alpha + 1}{m}`. This shows that $lim_{m\rightarrow\infty} \delta (m, \alpha) = 0$ for $\alpha < 1$. #TODO: prove this theorem.

    theorem Erdos697.erdos_697.beta_lt {α : } ( : 1 / Real.log 2 < α) :
    Filter.Tendsto (fun (x : ) => δ x α) Filter.atTop (nhds 0)

    Let $\beta = \frac{1}{\log 2}$. Then $lim_{m\rightarrow\infty} \delta (m, \alpha) = 0$ if $\alpha < \beta$. This is proved in [Ha92].

    theorem Erdos697.erdos_697.lt_beta {α : } ( : α < 1 / Real.log 2) :
    Filter.Tendsto (fun (x : ) => δ x α) Filter.atTop (nhds 1)

    $lim_{m\rightarrow\infty} \delta (m, \alpha) = 1$ if $\beta < \alpha$. This is proved in [Ha92].