Erdős Problem 697 #
Reference:
- erdosproblems.com/697
- [Ha92] Hall, R. R., On some conjectures of Erdős in Astérisque. I. J. Number Theory (1992), 313--319.
For each $m$ and $\alpha$, the density of the set of integers which are divisible by some $d \equiv 1 \pmod{m}$ with $1 < d < \exp (m ^ \alpha)$ exists.
For each $m$ and $\alpha$, $\delta (m, \alpha)$ is the density of the set of integers which are divisible by some $d \equiv 1 \pmod{m}$ with $1 < d < exp (m ^ \alpha)$ exists.
Equations
- Erdos697.δ m α = ⋯.choose
Instances For
theorem
Erdos697.erdos_697.beta_lt
{α : ℝ}
(hα : 1 / Real.log 2 < α)
:
Filter.Tendsto (fun (x : ℕ) => δ x α) Filter.atTop (nhds 0)
Let $\beta = \frac{1}{\log 2}$. Then $lim_{m\rightarrow\infty} \delta (m, \alpha) = 0$ if $\alpha < \beta$. This is proved in [Ha92].
theorem
Erdos697.erdos_697.lt_beta
{α : ℝ}
(hα : α < 1 / Real.log 2)
:
Filter.Tendsto (fun (x : ℕ) => δ x α) Filter.atTop (nhds 1)
$lim_{m\rightarrow\infty} \delta (m, \alpha) = 1$ if $\beta < \alpha$. This is proved in [Ha92].