Documentation

FormalConjectures.ErdosProblems.«695»

Erdős Problem 695 #

Reference: erdosproblems.com/695

theorem erdos_695 :
(∀ {q : }, StrictMono q(∀ (i : ), Nat.Prime (q i))(∀ (i : ), q (i + 1) % q i = 1)Filter.Tendsto (fun (k : ) => (q k) ^ (1 / k)) Filter.atTop Filter.atTop) sorry

Let $q_1 < q_2 < \cdots$ be a sequence of primes such that $q_{i + 1} \equiv 1 \pmod{q_i}$. Is it true that $$ \lim_{k \to \infty} q_k^{1/k} = \infty? $$

theorem erdos_695.variant.upperBound :
(∃ (q : ), StrictMono q (∀ (i : ), Nat.Prime (q i)) (∀ (i : ), q (i + 1) % q i = 1) ∃ (o : ), o =o[Filter.atTop] 1 ∀ (k : ), (q k) Real.exp (k * Real.log k ^ (1 + o k))) sorry

Is there a sequence of primes $q_1 < q_2 < \cdots$ such that $q_{i + 1} \equiv 1 \pmod{q_i}$ and $$ q(k) \leq \exp(k (\log k)^{1 + o(1)})? $$