Erdős Problem 694 #
Reference: erdosproblems.com/694
theorem
erdos_694
(max min : ℕ → ℕ)
(hmax : ∀ (n : ℕ), IsGreatest (Nat.totient ⁻¹' {n}) (max n))
(hmin : ∀ (n : ℕ), IsLeast (Nat.totient ⁻¹' {n}) (min n))
(x : ℕ)
:
Let $f_{\max}(n)$ be the largest $m$ such that $\phi(m) = n$, and $f_{\min}(n)$ be the smallest such $m$, where $\phi$ is Euler's totient function. Investigate $$ \max_{n\leq x}\frac{f_{\max}(n)}{f_{\min}(n)}. $$