return to top
source
Reference: erdosproblems.com/68
Is $$\sum_{n=2}^\infty \frac{1}{n!-1}$$ irrational?
$$\sum_{n=2}^\infty \frac{1}{n!-1} = \sum_{n=2}^\infty \sum_{k=1}^\infty \frac{1}{(n!)^k}$$