Erdős Problem 67 #
References:
- erdosproblems.com/67
- [Ta16] Tao, Terence, The Erdős discrepancy problem. Discrete Anal. (2016), Paper No. 1, 29.
theorem
Erdos67.erdos_67
(f : ℕ → { x : ℝ // x ∈ {-1, 1} })
(C : ℝ)
(hC : 0 < C)
:
∃ d ≥ 1, ∃ m ≥ 1, C < |∑ k ∈ Finset.Icc 1 m, ↑(f (k * d))|
The Erdős discrepancy problem
If $f\colon \mathbb N \rightarrow \{-1, +1\}$ then is it true that for every $C>0$ there exist $d, m \ge 1$ such that $$\left\lvert \sum_{1\leq k\leq m}f(kd)\right\rvert > C?$$ This is true, and was proved by Tao [Ta16]
theorem
Erdos67.erdos_67.variants.complex
(f : ℕ → ↑(Metric.sphere 0 1))
(C : ℝ)
(hC : 0 < C)
:
∃ d ≥ 1, ∃ m ≥ 1, C < ‖∑ k ∈ Finset.Icc 1 m, ↑(f (k * d))‖
The Erdős discrepancy problem (complex variant)
If $f\colon \mathbb N \rightarrow S^1 ⊆ ℂ$ then is it true that for every $C>0$ there exist $d, m \ge 1$ such that $$\left\lvert \sum_{1\leq k\leq m}f(kd)\right\rvert > C?$$ This is true, and was proved by Tao [Ta16]