Erdős Problem 66 #
Reference: erdosproblems.com/66
theorem
Erdos66.erdos_66 :
(∃ (A : Set ℕ) (c : ℝ),
c ≠ 0 ∧ Filter.Tendsto (fun (n : ℕ) => ↑(AdditiveCombinatorics.sumRep A n) / Real.log ↑n) Filter.atTop (nhds c)) ↔ sorry
Is there and $A \subset \mathbb{N}$ is such that $$\lim_{n\to \infty}\frac{1_A\ast 1_A(n)}{\log n}$$ exists and is $\ne 0$?