Documentation

FormalConjectures.ErdosProblems.«659»

Erdős Problem 659 #

Reference: erdosproblems.com/659

theorem Erdos659.erdos_659 :
sorry ∃ (A : Finset (EuclideanSpace (Fin 2))), (∀ (n : ), (A n).card = n SA n, S.card = 43 EuclideanGeometry.distinctDistances S) (fun (n : ) => (EuclideanGeometry.distinctDistances (A n))) =O[Filter.atTop] fun (n : ) => n / (Real.log n)

Is there a set of $n$ points in $\mathbb{R}^2$ such that every subset of $4$ points determines at least $3$ distances, yet the total number of distinct distances is $\ll \frac{n}{\sqrt{\log n}}$?