Erdős Problem 591 #
Reference: erdosproblems.com/591
theorem
Erdos591.erdos_591 :
sorry ↔ OrdinalCardinalRamsey (Ordinal.omega0 ^ Ordinal.omega0 ^ 2) (Ordinal.omega0 ^ Ordinal.omega0 ^ 2) 3
Let $α$ be the infinite ordinal $\omega^{\omega^2}$. Is it true that any red/blue colouring of the edges of $K_α$ there is either a red $K_α$ or a blue $K_3$.