Erdős Problem 591 #
Reference: erdosproblems.com/591
Let $α$ be the infinite ordinal $\omega^{\omega^2}$. Is it true that any red/blue colouring of the edges of $K_α$ there is either a red $K_α$ or a blue $K_3$.
Reference: erdosproblems.com/591
Let $α$ be the infinite ordinal $\omega^{\omega^2}$. Is it true that any red/blue colouring of the edges of $K_α$ there is either a red $K_α$ or a blue $K_3$.