Erdős Problem 590 #
References:
- erdosproblems.com/590
- [Ch72] Chang, C. C., A partition theorem for the complete graph on {$\omega\sp{\omega }$}. J. Combinatorial Theory Ser. A (1972), 396-452.
- [Sp57] Specker, Ernst, Teilmengen von Mengen mit Relationen. Comment. Math. Helv. (1957), 302-314.
- [La73] Larson, Jean A., A short proof of a partition theorem for the ordinal {$\omega \sp{\omega }$}. Ann. Math. Logic (1973/74), 129-145.
Let $α$ be the infinite ordinal $\omega^{\omega}$. It was proved by Chang [Ch72] that any red/blue colouring of the edges of $K_α$ there is either a red $K_α$ or a blue $K_3$.
theorem
Erdos590.erdos_590.variants.two :
OrdinalCardinalRamsey (Ordinal.omega0 ^ 2) (Ordinal.omega0 ^ 2) 3
Specker [Sp57] proved that when $α=ω^2$ any red/blue colouring of the edges of $K_α$ there is either a red $K_α$ or a blue $K_3$.
theorem
Erdos590.erdos_590.variants.ge_three_false
{n : ℕ}
(h : 3 ≤ n)
:
¬OrdinalCardinalRamsey (Ordinal.omega0 ^ n) (Ordinal.omega0 ^ n) 3
Specker [Sp57] proved that when $α=ω^n$ for $3≤ n < \omega$ then it is not the case that any red/blue colouring of the edges of $K_α$ there is either a red $K_α$ or a blue $K_3$.
Let m be a finite cardinal $< \omega$. Let $α$ be the infinite ordinal $\omega^{\omega}$. It was proved by Milnor that any red/blue colouring of the edges of $K_α$ there is either a red $K_α$ or a blue $K_3$. A shorter proof was found by Larson [La73]