Documentation

FormalConjectures.ErdosProblems.«541»

Erdős Problem 541 #

Reference: erdosproblems.com/541

theorem Erdos541.erdos_541 :
(∀ (p : ), Fact (Nat.Prime p)∀ (a : Fin pZMod p), (∃ (r : ), ∀ (S : Finset (Fin p)), S iS, a i = 0S.card = r)(Set.range a).ncard 2) True

Let $a_1, \dots, a_p$ be (not necessarily distinct) residues modulo a prime $p$, such that there exists some $r$ so that if $S \subseteq [p]$ is non-empty and $$\sum_{i \in S} a_i \equiv 0 \pmod{p}$$ then $|S| = r$.

Must there be at most two distinct residues amongst the $a_i$?

theorem Erdos541.erdos_541.variants.general_moduli (p : ) (a : Fin pZMod p) (ha₀ : ∃ (r : ), ∀ (S : Finset (Fin p)), S iS, a i = 0S.card = r) :

Gao, Hamidoune, and Wang [GHW10] solved this for all moduli p (not necessarily prime).

[GHW10] Gao, Weidong and Hamidoune, Yahya Ould and Wang, Guoqing, Distinct length modular zero-sum subsequences: a proof of Graham's conjecture. J. Number Theory (2010), 1425--1431.

theorem Erdos541.erdos_541.variants.large_primes :
∀ᶠ (p : ) in Filter.atTop, Nat.Prime p∀ (a : Fin pZMod p), (∃ (r : ), ∀ (S : Finset (Fin p)), S iS, a i = 0S.card = r)(Set.range a).ncard 2

This was proved by Erdős and Szemerédi [ErSz76] for p sufficiently large.

[ErSz76] Erd\H os, E. and Szemerédi, E., On a problem of Graham. Publ. Math. Debrecen (1976), 123--127.