Documentation

FormalConjectures.ErdosProblems.«522»

Erdős Problem 522 #

Reference: erdosproblems.com/522

structure KacPolynomial {k : Type u_1} (n : ) [Field k] [MeasurableSpace k] (S : Set k) (Ω : Type u_2) [MeasureTheory.MeasureSpace Ω] (μ : MeasureTheory.Measure k := by volume_tac) :
Type (max u_1 u_2)

A Kac Polynomial in n coefficients over some subset S of a field k is a polynomial whose n first coefficients are picked uniformely at random in S and whose other coefficients are all 0

Instances For
    theorem KacPolynomial.ext {k : Type u_1} {n : } {inst✝ : Field k} {inst✝¹ : MeasurableSpace k} {S : Set k} {Ω : Type u_2} {inst✝² : MeasureTheory.MeasureSpace Ω} {μ : autoParam (MeasureTheory.Measure k) _auto✝} {x y : KacPolynomial n S Ω μ} (toFun : x.toFun = y.toFun) :
    x = y
    instance instFunLikeKacPolynomialFinSuccForall {k : Type u_1} (n : ) [Field k] [MeasurableSpace k] (S : Set k) (Ω : Type u_2) [MeasureTheory.MeasureSpace Ω] (μ : MeasureTheory.Measure k := by volume_tac) :
    FunLike (KacPolynomial n S Ω μ) (Fin n.succ) (Ωk)

    We can always view a Kac polynomial as a random vector

    Equations
    noncomputable def KacPolynomial.toRandomPolynomial {k : Type u_1} {n : } [Field k] [MeasurableSpace k] {S : Set k} {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] {μ : MeasureTheory.Measure k} (f : KacPolynomial n S Ω μ) :
    ΩPolynomial k

    The random polynomial associated to a Kac polynomial

    Equations
    Instances For
      noncomputable def KacPolynomial.roots {k : Type u_1} {n : } [Field k] [MeasurableSpace k] {S : Set k} {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] {μ : MeasureTheory.Measure k} (f : KacPolynomial n S Ω μ) :
      ΩMultiset k

      The random multiset of roots associated to a Kac polynomial

      Equations
      Instances For
        theorem erdos_522 :
        ∃ (p : ) (o : ), Filter.Tendsto o Filter.atTop (nhds 0) Filter.Tendsto p Filter.atTop (nhds 0) ∀ (Ω : Type u_3) [inst : MeasureTheory.MeasureSpace Ω] [inst_1 : MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (n : ), 1 n∀ (f : KacPolynomial n {-1, 1} Ω MeasureTheory.volume), (MeasureTheory.volume {ω : Ω | |(Multiset.countP (fun (x : ) => x Metric.closedBall 0 1) (f.roots ω)) - n / 2| o n * n}).toReal p n

        Let f(z)=∑_{0≤k≤n} ϵ_k z^k be a random polynomial, where ϵ_k∈{−1,1} independently uniformly at random for 0≤k≤n. Is it true that the number of roots of f(z) in {z∈C:|z|≤1} is, almost surely, (1/2+o(1))n?

        Formalization note: here the goal seems to mean that ℙ(| #roots of f in unit disk - n/2 | ≥ o(1)) → 0 as n → ∞ This is quite awkward to formalise!

        Erdős and Offord showed that the number of real roots of a random degree n polynomial with ±1 coefficients is (2/π+o(1))log n.

        theorem erdos_522.variants.yakir_solution :
        ∃ (p : ), Filter.Tendsto p Filter.atTop (nhds 0) ∀ (Ω : Type u_3) [inst : MeasureTheory.MeasureSpace Ω] [inst_1 : MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (n : ), 2 n∀ (f : KacPolynomial n {-1, 1} Ω MeasureTheory.volume), (MeasureTheory.volume {ω : Ω | |(Multiset.countP (fun (x : ) => x Metric.closedBall 0 1) (f.roots ω)) - n / 2| n ^ (9 / 10)}).toReal p n

        Yakir proved that almost all Kac polynomials have n/2+O(n^(9/10)) many roots in {z∈C:|z|≤1}.