Erdős Problem 520 #
Reference: erdosproblems.com/520
structure
IsRademacherMultiplicative
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
(f : ℕ → Ω → ℝ)
:
A random function $f$ is Rademacher multiplicative if $f(1) = 1$, for each prime $p$, we independently choose $f(p) \in \{-1, 1\}$ uniformly at random, for each square-free integer $n = p_1 \cdots p_r$, $f(n) = f(p_1) \cdots f(p_r)$, and for each non-squarefree integer $n$, $f(n) = 0$.
- iIndepFun_primes : ProbabilityTheory.iIndepFun (fun (p : Nat.Primes) => f ↑p) MeasureTheory.volume
Prime entries are independent.
- prob_of_prime (p : ℕ) : Nat.Prime p → MeasureTheory.volume {ω : Ω | f p ω = 1} = 1 / 2 ∧ MeasureTheory.volume {ω : Ω | f p ω = -1} = 1 / 2
Primes entries are uniformly distributed on
{-1, 1}.
Instances For
theorem
erdos_520
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
sorry ↔ ∃ c > 0,
∀ (f : ℕ → Ω → ℝ),
IsRademacherMultiplicative f →
∀ᵐ (ω : Ω), Filter.limsup (fun (N : ℕ) => ∑ m ∈ Finset.Iic N, f m ω / √(↑N * Real.log (Real.log ↑N))) Filter.atTop = c
Let $f$ be a Rademacher multiplicative function. Does there exist some constant $c > 0$ such that, almost surely, [ \limsup_{N \to \infty} \frac{\sum_{m \leq N} f(m)}{\sqrt{N \log \log N}} = c? ]