Documentation

FormalConjectures.ErdosProblems.«520»

Erdős Problem 520 #

Reference: erdosproblems.com/520

structure IsRademacherMultiplicative {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (f : Ω) :

A random function $f$ is Rademacher multiplicative if $f(1) = 1$, for each prime $p$, we independently choose $f(p) \in \{-1, 1\}$ uniformly at random, for each square-free integer $n = p_1 \cdots p_r$, $f(n) = f(p_1) \cdots f(p_r)$, and for each non-squarefree integer $n$, $f(n) = 0$.

Instances For
    theorem erdos_520 {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
    sorry c > 0, ∀ (f : Ω), IsRademacherMultiplicative f∀ᵐ (ω : Ω), Filter.limsup (fun (N : ) => mFinset.Iic N, f m ω / (N * Real.log (Real.log N))) Filter.atTop = c

    Let $f$ be a Rademacher multiplicative function. Does there exist some constant $c > 0$ such that, almost surely, [ \limsup_{N \to \infty} \frac{\sum_{m \leq N} f(m)}{\sqrt{N \log \log N}} = c? ]