Documentation

FormalConjectures.ErdosProblems.«516»

Erdős Problem 516 #

References:

def OfFiniteOrder {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] (f : EF) :

An entire function f is said to be of finite order if there exist numbers c, a ≥ 0 such that for all z, ‖f z‖ ≤ c * rexp (‖z‖ ^ a).

Equations
Instances For
    noncomputable def Erdos516.ratio (r : ) (f : ) :
    Equations
    Instances For
      theorem Erdos516.erdos_516.limsup_ratio_eq_one_of_hasFabryGaps_ofFiniteOrder {f : } {n : } (hn : HasFabryGaps n) {a : } (hfn : ∀ (z : ), HasSum (fun (k : ) => a k * z ^ n k) (f z)) (hf : OfFiniteOrder f) :
      Filter.limsup (fun (r : ) => ratio r f) Filter.atTop = 1

      Let f = ∑ aₖzⁿₖ be an entire function of finite order such that nₖ / k → ∞. Then limsup (fun r => ratio r f) atTop = 1. This is proved in [Fu63].

      theorem Erdos516.erdos_516.limsup_ratio_eq_one {f : } {n : } (hn : c > 0, ∀ (k : ), (n k) > k * Real.log k ^ (2 + c)) {a : } (hfn : ∀ (z : ), HasSum (fun (k : ) => a k * z ^ n k) (f z)) :
      Filter.limsup (fun (r : ) => ratio r f) Filter.atTop = 1

      Let f = ∑ aₖzⁿₖ be an entire function such that nₖ > k (log k) ^ (2 + c). Then limsup (fun r => ratio r f) atTop = 1. This is proved in [Ko65].

      theorem Erdos516.erdos_516.limsup_ratio_eq_one_of_hasFejerGaps :
      sorry ∀ {f : } {n : }, HasFejerGaps n∀ {a : }, (∀ (z : ), HasSum (fun (k : ) => a k * z ^ n k) (f z))Filter.limsup (fun (r : ) => ratio r f) Filter.atTop = 1

      Is it true that for all entire functions f = ∑ aₖzⁿₖ such that ∑' 1 / nₖ < ∞, limsup (fun r => ratio r f) atTop = 1?