Erdős Problem 516 #
References:
- erdosproblems.com/516
- [Fu63] Fuchs, W. H. J., Proof of a conjecture of G. Pólya concerning gap series. Illinois J. Math. (1963), 661--667.
- [Ko65] Kövari, Thomas, A gap-theorem for entire functions of infinite order. Michigan Math. J. (1965), 133--140.
def
OfFiniteOrder
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[NormedAddCommGroup F]
[NormedSpace ℂ F]
(f : E → F)
:
An entire function f is said to be of finite order if there exist numbers c, a ≥ 0
such that for all z, ‖f z‖ ≤ c * rexp (‖z‖ ^ a).
Equations
Instances For
theorem
Erdos516.erdos_516.limsup_ratio_eq_one_of_hasFabryGaps_ofFiniteOrder
{f : ℂ → ℂ}
{n : ℕ → ℕ}
(hn : HasFabryGaps n)
{a : ℕ → ℂ}
(hfn : ∀ (z : ℂ), HasSum (fun (k : ℕ) => a k * z ^ n k) (f z))
(hf : OfFiniteOrder f)
:
Let f = ∑ aₖzⁿₖ be an entire function of finite order such that nₖ / k → ∞.
Then limsup (fun r => ratio r f) atTop = 1. This is proved in [Fu63].
theorem
Erdos516.erdos_516.limsup_ratio_eq_one
{f : ℂ → ℂ}
{n : ℕ → ℕ}
(hn : ∃ c > 0, ∀ (k : ℕ), ↑(n k) > ↑k * Real.log ↑k ^ (2 + c))
{a : ℕ → ℂ}
(hfn : ∀ (z : ℂ), HasSum (fun (k : ℕ) => a k * z ^ n k) (f z))
:
Let f = ∑ aₖzⁿₖ be an entire function such that nₖ > k (log k) ^ (2 + c).
Then limsup (fun r => ratio r f) atTop = 1. This is proved in [Ko65].
Is it true that for all entire functions f = ∑ aₖzⁿₖ such that ∑' 1 / nₖ < ∞,
limsup (fun r => ratio r f) atTop = 1?