Erdős Problem 513 #
Reference:
- erdosproblems.com/513
- [ClHa64] Clunie, J. and Hayman, W. K., The maximum term of a power series. J. Analyse Math. (1964), 143-186.
theorem
Erdos513.erdos_513.sup :
sorry = ⨆ (f : { f : ℂ → ℂ // Transcendental (Polynomial ℂ) f ∧ Differentiable ℂ f }),
Filter.liminf (fun (r : ℝ) => ratio r ↑f) Filter.atTop
Let f be a transcendental entire function. What is the greatest possible value of
liminf (fun r : ℝ => ratio r f) atTop?
theorem
Erdos513.erdos_513.upper_bound :
∃ c > 0,
⨆ (f : { f : ℂ → ℂ // Transcendental (Polynomial ℂ) f ∧ Differentiable ℂ f }),
Filter.liminf (fun (r : ℝ) => ratio r ↑f) Filter.atTop ≤ 2 / Real.pi - c
For all transcendental entire function f, liminf (fun r : ℝ => ratio r f) atTop ≤ 2 / π - c
for some c > 0. This is proved in [ClHa64].
theorem
Erdos513.erdos_513.lower_bound :
⨆ (f : { f : ℂ → ℂ // Transcendental (Polynomial ℂ) f ∧ Differentiable ℂ f }),
Filter.liminf (fun (r : ℝ) => ratio r ↑f) Filter.atTop > 1 / 2
For all transcendental entire function f, liminf (fun r : ℝ => ratio r f) atTop > 1 / 2.