Documentation

FormalConjectures.ErdosProblems.«510»

Erdős Problem 510 #

Reference: erdosproblems.com/510

theorem Erdos510.erdos_510 :
(∃ (c : ) (_ : 0 < c), ∀ (N : ) (A : Finset ), A.card = N∃ (θ : ), nA, Real.cos (n * θ) < -c * N) sorry

Chowla's cosine problem

If $A\subset \mathbb{Z}$ is a finite set of size $N$ then is there some absolute constant $c>0$ and $\theta$ such that $$\sum_{n\in A}\cos(n\theta) < -cN^{1/2}?$$