Documentation

FormalConjectures.ErdosProblems.«51»

Erdős Problem 51 #

Reference: erdosproblems.com/51

theorem Erdos51.erdos_51 :
(∃ (A : Set ) (n : A), A.Infinite (∀ (a : A), IsLeast (Nat.totient ⁻¹' {a}) (n a)) Filter.Tendsto (fun (a : A) => (n a) / a) Filter.atTop Filter.atTop) sorry

Is there an infinite set $A \subset \mathbb{N}$ such that for every $a \in A$, there is an integer n such that $\phi(n)=a$, and yet if $n_a$ is the smallest such integer, then $\frac{n_a}{a} → \infty$ as $a → ∞$?