Documentation

FormalConjectures.ErdosProblems.«477»

Erdős Problem 477 #

References:

theorem Erdos477.erdos_477 :
sorry ∃ (f : Polynomial ), 2 f.degree ∃ (A : Set ), ∀ (z : ), ∃! ab : × , ab A ×ˢ ((fun (a : ) => Polynomial.eval a f) '' {n : | 0 < n}) z = ab.1 + ab.2

Is there a polynomial $f:\mathbb{Z}\to \mathbb{Z}$ of degree at least $2$ and a set $A\subset \mathbb{Z}$ such that for any $z\in \mathbb{Z}$ there is exactly one $a\in A$ and $b\in \{ f(n) : n\in\mathbb{Z}\}$ such that $z=a+b$?

theorem Erdos477.erdos_477.S_sq (A : Set ) :
∃ (z : ), ¬∃! a : × , a A ×ˢ ((fun (a : ) => Polynomial.eval a (Polynomial.X ^ 2)) '' {n : | 0 < n}) z = a.1 + a.2

There is no such $A$ for the polynomial $f(x) = X^2$.

This is shown in [Sek59].

theorem Erdos477.erdos_477.degree_two_dvd_condition_b_ne_zero {a b c : } (ha : a 0) (hb : b 0) (hab : a b) :
have f := a Polynomial.X ^ 2 + b Polynomial.X + Polynomial.C c; ∀ (A : Set ), ∃ (z : ), ¬∃! a : × , a A ×ˢ ((fun (a : ) => Polynomial.eval a f) '' {n : | 0 < n}) z = a.1 + a.2

There is no such $A$ for any polynomial $f(x) = aX^2 + bX + c$, if $a | b$ with $a \ne 0$ and $b \ne 0. This was found be AlphaProof for the specific instance $X^2 - X + 1$ and then generalised.

theorem Erdos477.erdos_477.X_pow_three (A : Set ) :
∃ (z : ), ¬∃! a : × , a A ×ˢ ((fun (a : ) => Polynomial.eval a (Polynomial.X ^ 3)) '' {n : | 0 < n}) z = a.1 + a.2

Probably there is no such $A$ for the polynomial $X^3$.

theorem Erdos477.erdos_477.monomial (k : ) (hk : 2 k) (A : Set ) :
∃ (z : ), ¬∃! a : × , a A ×ˢ ((fun (a : ) => Polynomial.eval a (Polynomial.X ^ k)) '' {n : | 0 < n}) z = a.1 + a.2

Probably there is no such $A$ for the polynomial $X^k$ for any $k \ge 2$. This is asked in [Sek59].