Documentation

FormalConjectures.ErdosProblems.«477»

Erdős Problem 477 #

Reference: erdosproblems.com/477

theorem erdos_477 :
(∀ (f : Polynomial ), 2 f.degree∃ (A : Set ), ∀ (z : ), ∃! a : × , (a A ×ˢ Set.range fun (a : ) => Polynomial.eval a f) z = a.1 + a.2) sorry

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a polynomial of degree at least $2$.

Is there a set $A$ such that every $z \in \mathbb{Z}$ has exactly one representation as $z = a + f(n)$ for some $a \in A$ and $n \in \mathbb{Z}$?

theorem erdos_477.variants.strong_negation (f : Polynomial ) (hf₀ : 2 f.degree) :
¬∃ (A : Set ), ∀ (z : ), ∃! a : × , (a A ×ˢ Set.range fun (a : ) => Polynomial.eval a f) z = a.1 + a.2

Probably there is no such $A$ for any polynomial $f$.