Documentation

FormalConjectures.ErdosProblems.«463»

Erdős Problem 463 #

Reference: erdosproblems.com/463

theorem Erdos463.erdos_463 :
(∃ (f : ) (_ : Filter.Tendsto f Filter.atTop Filter.atTop), ∀ᶠ (n : ) in Filter.atTop, ∃ (m : ), ¬Nat.Prime m n + f n < m m < n + m.minFac) sorry

Is there a function $f$ with $f(n)\to\infty$ as $n\to\infty$ such that, for all large $n$, there is a composite number $m$ such that $$ n + f(n) < m < n + p(m) $$ Here $p(m)$ is the least prime factor of $m$.