Erdős Problem 458 #
Reference: erdosproblems.com/458
The least common multiple of the integers in the set $\{1, \dots, n\}$.
Equations
- Erdos458.lcm_upto n = (Finset.Icc 1 n).lcm id
Instances For
Let $\operatorname{lcm}(1, \dots, n)$ denote the least common multiple of $\{1, \dots, n\}$. Let $p_k$ be the $k$-th prime. Is it true that for all $k \geq 1$, $\operatorname{lcm}(1, \dots, p_{k+1}-1) < p_k \cdot \operatorname{lcm}(1, \dots, p_k)$?