Documentation

FormalConjectures.ErdosProblems.«457»

Erdős Problem 457 #

Reference: erdosproblems.com/457

theorem Erdos457.erdos_457 :
(∃ ε > 0, {n : | ∀ (p : ), p (2 + ε) * Real.log nNat.Prime pp iFinset.Icc 1 Real.log n⌋₊, (n + i)}.Infinite) sorry

Is there some $\epsilon > 0$ such that there are infinitely many $n$ where all primes $p \le (2 + \epsilon) \log n$ divide $$ \prod_{1 \le i \le \log n} (n + i)? $$

@[reducible, inline]
noncomputable abbrev Erdos457.q (n : ) (k : ) :

Let $q(n, k)$ denote the least prime which does not divide $\prod_{1 \le i \le k}(n + i)$.

Equations
Instances For
    theorem Erdos457.erdos_457.variants.qnk :
    (∃ ε > 0, {n : | (2 + ε) * Real.log n (q n (Real.log n))}.Infinite) sorry

    More generally, let $q(n, k)$ denote the least prime which does not divide $\prod_{1 \le i \le k}(n + i)$. This problem asks whether $q(n, \log n) \ge (2 + \epsilon) \log n$ infinitely often.

    theorem Erdos457.erdos_457.variants.one_sub :
    (∃ ε > 0, ∀ᶠ (n : ) in Filter.atTop, (q n (Real.log n)) < (1 - ε) * Real.log n ^ 2) sorry

    Taking $n$ to be the product of primes between $\log n$ and $(2 + o(1)) \log n$ gives an example where $$ q(n, \log n) \ge (2 + o(1)) \log n. $$ Can one prove that $q(n, \log n) < (1 - \epsilon) (\log n)^2$ for all large $n$ and some $\epsilon > 0$?