Documentation

FormalConjectures.ErdosProblems.«455»

Erdős Problem 455 #

References:

theorem Erdos455.erdos_455 :
sorry ∀ (q : ), StrictMono q(∀ (n : ), Nat.Prime (q n) q (n + 1) - q n q n - q (n - 1))Filter.Tendsto (fun (n : ) => (q n) / n ^ 2) Filter.atTop Filter.atTop

Let q : ℕ → ℕ be a strictly increasing sequence of primes such that q (n + 1) - q n ≥ q n - q (n - 1). Must lim q n / (n ^ 2) = ∞?

theorem Erdos455.erdos_455.liminf (q : ) :
StrictMono q(∀ (n : ), Nat.Prime (q n) q (n + 1) - q n q n - q (n - 1))Filter.liminf (fun (n : ) => (q n) / n ^ 2) Filter.atTop > 0.352

Let q : ℕ → ℕ be a strictly increasing sequence of primes such that q (n + 1) - q n ≥ q n - q (n - 1). Then liminf q n / (n ^ 2) > 0.352, and this is proved in [Ri76].