Documentation

FormalConjectures.ErdosProblems.«428»

Erdős Problem 428 #

Reference: erdosproblems.com/428

noncomputable def Erdos428.primeDensityRatio (A : Set ) (n : ) :

The density ratio of set $A$ up to $n$ relative to the prime counting function $\pi(n)$.

Equations
Instances For
    theorem Erdos428.erdos_428 :
    sorry ∃ (A : Set ), (∃ᶠ (n : ) in Filter.atTop, aA, 0 < aa < nNat.Prime (n - a)) Filter.liminf (fun (n : ) => primeDensityRatio A n) Filter.atTop > 0

    Is there a set $A\subseteq \mathbb{N}$ such that, for infinitely many $n$, all of $n-a$ are prime for all $a\in A$ with $0 < a < n$ and [\liminf\frac{\lvert A\cap [1,x]\rvert}{\pi(x)}>0?]