Erdős Problem 409 #
Reference: erdosproblems.com/409
theorem
erdos_409.parts.i.variants.isBigO
(c : ℕ → ℕ)
(h : ∀ n > 0, IsLeast {i : ℕ | Nat.Prime ((fun (x : ℕ) => x.totient + 1)^[i] n)} (c n))
:
Let $c(n)$ be the minimum number of iterations of $n\mapsto\phi(n) + 1$ before a prime is reached. Find the simplest function $g(n)$ such that $c(n) = O(g(n))$?
theorem
erdos_409.parts.i.variants.isLittleO
(c : ℕ → ℕ)
(h : ∀ n > 0, IsLeast {i : ℕ | Nat.Prime ((fun (x : ℕ) => x.totient + 1)^[i] n)} (c n))
:
Let $c(n)$ be the minimum number of iterations of $n\mapsto\phi(n) + 1$ before a prime is reached. Find the simplest function $g(n)$ such that $c(n) = o(g(n))$?
theorem
erdos_409.variants.sigma.parts.i.isBigO
(c : ℕ → ℕ)
(h : ∀ n > 1, IsLeast {i : ℕ | Nat.Prime ((fun (x : ℕ) => (ArithmeticFunction.sigma 1) x - 1)^[i] n)} (c n))
:
Let $c(n)$ be the minimum number of iterations of $n\mapsto\sigma(n) - 1$ before a prime is reached. Find the simplest function $g(n)$ such that $c(n) = O(g(n))$?
theorem
erdos_409.variants.sigma.parts.i.isLittleO
(c : ℕ → ℕ)
(h : ∀ n > 1, IsLeast {i : ℕ | Nat.Prime ((fun (x : ℕ) => (ArithmeticFunction.sigma 1) x - 1)^[i] n)} (c n))
:
Let $c(n)$ be the minimum number of iterations of $n\mapsto\sigma(n) - 1$ before a prime is reached. Find the simplest function $g(n)$ such that $c(n) = o(g(n))$?