Erdős Problem 40 #
Reference: erdosproblems.com/40
The predicate for a function $g\colon\mathbb{N} → \mathbb{R})$ that $$\lvert A\cap \{1,\ldots,N\}\rvert \gg \frac{N^{1/2}}{g(N)}$$ implies $\limsup 1_A\ast 1_A(n)=\infty$.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Given a set of functions $\mathbb{N} → \mathbb{R})$, we assert that for all $g$ in that set, if $g(N) → \infty$ then $$\lvert A\cap \{1,\ldots,N\}\rvert \gg \frac{N^{1/2}}{g(N)}$$ implies $\limsup 1_A\ast 1_A(n)=\infty$.
Equations
- Erdos40.Erdos40 G = ∀ (g : ℕ → ℝ), G g → Filter.Tendsto g Filter.atTop Filter.atTop → Erdos40.Erdos40For g
Instances For
For what functions $g(N) → \infty$ is it true that $$\lvert A\cap \{1,\ldots,N\}\rvert \gg \frac{N^{1/2}}{g(N)}$$ implies $\limsup 1_A\ast 1_A(n)=\infty$?
If we don't pose additional conditions on the functions, then this is a stronger form of the Erdős-Turán conjecture, see Erdõs Problem 28, (since establishing this for any function $g(N) → \infty$ would imply a positive solution to Erdős Problem 28).