Erdős Problem 399 #
Is it true that there are no solutions to $n! = x^k \pm y^k$ with $x,y,n \in \mathbb{N}$, with $xy > 1$ and $k > 2$?
References:
- erdosproblems.com/399
- [Br32] R. Breusch, Zur Verallgemeinerung des Bertrandschen Postulates (1932)
- [ErOb37] P. Erdős and R. Obláth, Über diophantische Gleichungen der Form $n!=x^p+y^p$ und $n!\pm m!=x^p$ (1937)
- [PoSh73] R. Pollack and H. Shapiro, The next to last case of a factorial diophantine equation (1973)
- [Gu04] R. Guy, Unsolved problems in number theory (2004)
Is it true that there are no solutions to n! = x^k ± y^k with x,y,n ∈ ℕ, x*y > 1, and
k > 2?
The answer is no: Jonas Barfield found the counterexample 10! = 48^4 - 36^4 (equivalently,
10! + 36^4 = 48^4).