Documentation

FormalConjectures.ErdosProblems.«399»

Erdős Problem 399 #

Is it true that there are no solutions to $n! = x^k \pm y^k$ with $x,y,n \in \mathbb{N}$, with $xy > 1$ and $k > 2$?

References:

theorem Erdos399.erdos_399 :
False ¬∃ (n : ) (x : ) (y : ) (k : ), 1 < x * y 2 < k (n.factorial = x ^ k + y ^ k n.factorial + y ^ k = x ^ k)

Is it true that there are no solutions to n! = x^k ± y^k with x,y,n ∈ ℕ, x*y > 1, and k > 2?

The answer is no: Jonas Barfield found the counterexample 10! = 48^4 - 36^4 (equivalently, 10! + 36^4 = 48^4).

theorem Erdos399.erdos_399.variants.erdos_oblath {n x y k : } :
x.Coprime y1 < x * y2 < kk 4n.factorial x ^ k + y ^ k n.factorial + y ^ k x ^ k

Erdős and Obláth proved there are no solutions when x.Coprime y and k ≠ 4.

Pollack and Shapiro proved there are no solutions to n! = x^4 - 1.

theorem Erdos399.erdos_399.variants.cambie {n x y : } :
x.Coprime y1 < x * yn.factorial x ^ 4 + y ^ 4

Cambie observed that there are no solutions to n! = x^4 + y^4 with x.Coprime y and x*y > 1.

theorem Erdos399.erdos_399.variants.sum_two_squares {n x y : } :
1 < x * yn.factorial = x ^ 2 + y ^ 2n = 6 (x = 12 y = 24 x = 24 y = 12)

The only solution to n! = x^2 + y^2 with x*y > 1 is 6! = 12^2 + 24^2 (up to swapping x and y).