Documentation

FormalConjectures.ErdosProblems.«397»

Erdős Problem 397 #

References:

theorem Erdos397.erdos_397 :
{(M, N) : Finset × Finset | Disjoint M N iM, i.centralBinom = jN, j.centralBinom}.Finite sorry

Are there only finitely many solutions to $$ \prod_i \binom{2m_i}{m_i}=\prod_j \binom{2n_j}{n_j} $$ with the $m_i,n_j$ distinct?