Documentation

FormalConjectures.ErdosProblems.«392»

Erdős Problem 392 #

Reference: erdosproblems.com/392

theorem Erdos392.erdos_392 (A : ) (h : n > 0, IsLeast {x : | ∃ (t : ) (_ : ∃ (a : Fin (t + 1)), n.factorial = i : Fin (t + 1), a i Monotone a a t n ^ 2), t + 1 = x} (A n)) :
(fun (n : ) => (A n) - n / 2 + n / (2 * Real.log n)) =o[Filter.atTop] fun (n : ) => n / Real.log n

Let $A(n)$ denote the least value of $t$ such that $$ n! = a_1 \cdots a_t $$ with $a_1 \leq \cdots \leq a_t\leq n^2$. Then $$ A(n) = \frac{n}{2} - \frac{n}{2\log n} + o\left(\frac{n}{\log n}\right). $$

theorem Erdos392.erdos_392.variants.lower (A : ) (hA : n > 0, IsLeast {x : | ∃ (t : ) (_ : ∃ (a : Fin (t + 1)), n.factorial = i : Fin (t + 1), a i Monotone a a t n), t + 1 = x} (A n)) :
(fun (n : ) => (A n) - n + n / Real.log n) =o[Filter.atTop] fun (n : ) => n / Real.log n

If we change the condition to $a_t \leq n$ it can be shown that $$ A(n) = n - \frac{n}{log n} + o\left(\frac{n}{\log n}\right) $$

theorem Erdos392.erdos_392.variants.implication (h : ∀ (A : ), (∀ n > 0, IsLeast {x : | ∃ (t : ) (_ : ∃ (a : Fin (t + 1)), n.factorial = i : Fin (t + 1), a i Monotone a a t n ^ 2), t + 1 = x} (A n))(fun (n : ) => (A n) - n / 2 + n / (2 * Real.log n)) =o[Filter.atTop] fun (n : ) => n / Real.log n) (A : ) (hA : n > 0, IsLeast {x : | ∃ (t : ) (_ : ∃ (a : Fin (t + 1)), n.factorial = i : Fin (t + 1), a i Monotone a a t n), t + 1 = x} (A n)) :
(fun (n : ) => (A n) - n + n / Real.log n) =o[Filter.atTop] fun (n : ) => n / Real.log n

Cambie has observed that a positive answer follows from the result above with $a_t \leq n$, simply by pairing variables together, e.g. taking $a'_i = a_{2i-1}a_{2i}$ (and the lower bound follows from Stirling's approximation).