Documentation

FormalConjectures.ErdosProblems.«38»

Erdős Problem 38 #

Reference: erdosproblems.com/38

theorem Erdos38.erdos_38 :
sorry ∃ (B : Set ), ¬B.IsAddBasis ∃ (f : ), (∀ (α : ), 0 < αα < 1f α > 0) ∀ (A : Set ) (N : ), have α := schnirelmannDensity A; bB, (Set.Ioc 0 N (A (A + {b}))).ncard (α + f α) * N

Does there exist $B \subset \mathbb{N}$ which is not an additive basis, but is such that for every set $A \subseteq \mathbb{N}$ of Schnirelmann density $\alpha$ and every $N$ there exists $b \in B$ such that [ \lvert (A \cup (A+b)) \cap {1, \ldots, N} \rvert \geq (\alpha + f(\alpha)) N ] where $f(\alpha) > 0$ for $0 < \alpha < 1$?