Erdős Problem 377 #
Reference: erdosproblems.com/377
The sum of the inverses of all primes smaller than $n$, which don't divide the central binom coefficient.
Equations
- sumInvPrimesNotDvdCentralBinom n = ∑ p ∈ Finset.filter (fun (p : ℕ) => Nat.Prime p) (Finset.Icc 1 n), if p ∣ (2 * n).choose n then 0 else 1 / ↑p
Instances For
Erdos, Graham, Ruzsa, and Straus proved that if $$ f(n) = \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} $$ and $$ \gamma_0 = \sum_{k = 2}^{\infty} \frac{\log k}{2^k} $$ then $$ \lim_{x\to\infty} \frac{1}{x}\sum_{n\leq x} f(n) = \gamma_0 $$
[EGRS75] Erdős, P. and Graham, R. L. and Ruzsa, I. Z. and Straus, E. G., On the prime factors of $(\sp{2n}\sb{n})$. Math. Comp. (1975), 83-92.
Erdos, Graham, Ruzsa, and Straus proved that if $$ f(n) = \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} $$ and $$ \gamma_0 = \sum_{k = 2}^{\infty} \frac{\log k}{2^k} $$ then $$ \lim_{x\to\infty} \frac{1}{x}\sum_{n\leq x} f(n)^2 = \gamma_0^2 $$
[EGRS75] Erdős, P. and Graham, R. L. and Ruzsa, I. Z. and Straus, E. G., On the prime factors of $(\sp{2n}\sb{n})$. Math. Comp. (1975), 83-92.
Erdos, Graham, Ruzsa, and Straus proved that if $$ f(n) = \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} $$ and $$ \gamma_0 = \sum_{k = 2}^{\infty} \frac{\log k}{2^k} $$ then for almost all integers $f(m) = \gamma_0 + o(1)$.
[EGRS75] Erdős, P. and Graham, R. L. and Ruzsa, I. Z. and Straus, E. G., On the prime factors of $(\sp{2n}\sb{n})$. Math. Comp. (1975), 83-92.
Erdos, Graham, Ruzsa, and Straus proved that if $$ f(n) = \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} $$ then there is some constant $c < 1$ such that for all large $n$ $$ f(n) \leq c \log\log n. $$
[EGRS75] Erdős, P. and Graham, R. L. and Ruzsa, I. Z. and Straus, E. G., On the prime factors of $(\sp{2n}\sb{n})$. Math. Comp. (1975), 83-92.