Documentation

FormalConjectures.ErdosProblems.«377»

Erdős Problem 377 #

Reference: erdosproblems.com/377

@[reducible, inline]
noncomputable abbrev sumInvPrimesNotDvdCentralBinom (n : ) :

The sum of the inverses of all primes smaller than $n$, which don't divide the central binom coefficient.

Equations
Instances For
    theorem erdos_377 :
    (∃ C > 0, ∀ (n : ), sumInvPrimesNotDvdCentralBinom n C) sorry

    Is there some absolute constant $C > 0$ such that $$ \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} \leq C $$ for all $n$?

    theorem erdos_377.variants.limit.i (γ₀ : ) (hγ₀ : γ₀ = ∑' (k : ), Real.log (k + 2) / 2 ^ (k + 2)) :
    Filter.Tendsto (fun (x : ) => 1 / x * nFinset.Icc 1 x, sumInvPrimesNotDvdCentralBinom n) Filter.atTop (nhds γ₀)

    Erdos, Graham, Ruzsa, and Straus proved that if $$ f(n) = \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} $$ and $$ \gamma_0 = \sum_{k = 2}^{\infty} \frac{\log k}{2^k} $$ then $$ \lim_{x\to\infty} \frac{1}{x}\sum_{n\leq x} f(n) = \gamma_0 $$

    [EGRS75] Erdős, P. and Graham, R. L. and Ruzsa, I. Z. and Straus, E. G., On the prime factors of $(\sp{2n}\sb{n})$. Math. Comp. (1975), 83-92.

    theorem erdos_377.variants.limit.ii (γ₀ : ) (hγ₀ : γ₀ = ∑' (k : ), Real.log (k + 2) / 2 ^ (k + 2)) :
    Filter.Tendsto (fun (x : ) => 1 / x * nFinset.Icc 1 x, sumInvPrimesNotDvdCentralBinom n ^ 2) Filter.atTop (nhds (γ₀ ^ 2))

    Erdos, Graham, Ruzsa, and Straus proved that if $$ f(n) = \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} $$ and $$ \gamma_0 = \sum_{k = 2}^{\infty} \frac{\log k}{2^k} $$ then $$ \lim_{x\to\infty} \frac{1}{x}\sum_{n\leq x} f(n)^2 = \gamma_0^2 $$

    [EGRS75] Erdős, P. and Graham, R. L. and Ruzsa, I. Z. and Straus, E. G., On the prime factors of $(\sp{2n}\sb{n})$. Math. Comp. (1975), 83-92.

    theorem erdos_377.variants.ae (γ₀ : ) (hγ₀ : γ₀ = ∑' (k : ), Real.log (k + 2) / 2 ^ (k + 2)) :

    Erdos, Graham, Ruzsa, and Straus proved that if $$ f(n) = \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} $$ and $$ \gamma_0 = \sum_{k = 2}^{\infty} \frac{\log k}{2^k} $$ then for almost all integers $f(m) = \gamma_0 + o(1)$.

    [EGRS75] Erdős, P. and Graham, R. L. and Ruzsa, I. Z. and Straus, E. G., On the prime factors of $(\sp{2n}\sb{n})$. Math. Comp. (1975), 83-92.

    Erdos, Graham, Ruzsa, and Straus proved that if $$ f(n) = \sum_{p \leq n} 1_{p\nmid {2n \choose n}}\frac{1}{p} $$ then there is some constant $c < 1$ such that for all large $n$ $$ f(n) \leq c \log\log n. $$

    [EGRS75] Erdős, P. and Graham, R. L. and Ruzsa, I. Z. and Straus, E. G., On the prime factors of $(\sp{2n}\sb{n})$. Math. Comp. (1975), 83-92.