Erdős Problem 364 #
Reference: erdosproblems.com/364
theorem
Erdos364.erdos_364.variants.strong :
∃ (c : ℝ) (_ : c > 0),
∀ (k : ℕ), ↑(Nat.nth Nat.Powerful (k + 2)) - ↑(Nat.nth Nat.Powerful k) > ↑(Nat.nth Nat.Powerful k) ^ c
Erdős [Er76d] conjectured a stronger statement: if $n_k$ is the $k$th powerful number, then $n_{k+2} - n_k > n_k^c$ for some constant $c > 0$.
[Er76d] Erdős, P., Problems and results on number theoretic properties of consecutive integers and related questions. Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975) (1976), 25-44.