Documentation

FormalConjectures.ErdosProblems.«355»

theorem Erdos355.erdos_355 :
(∃ (A : ), IsLacunary A ∃ (u : ) (v : ), u < v ∀ (q : ), q Set.Ioo u vq {x : | ∃ (A' : Finset ) (_ : A' Set.range A), aA', 1 / a = x}) sorry

Is there a lacunary sequence $A\subseteq \mathbb{N}$ (so that $A=\{a_1 < \cdots\}$ and there exists some $\lambda > 1$ such that $a_{n+1}/a_n\geq \lambda$ for all $n\geq 1$) such that [\left{ \sum_{a\in A'}\frac{1}{a} : A'\subseteq A\textrm{ finite}\right}] contain all rationals in some open interval?