Documentation

FormalConjectures.ErdosProblems.«354»

Erdős Problem 354 #

Reference: erdosproblems.com/354

noncomputable def Erdos354.FloorMultiples (a γ : ) (n : ) :

The sequence ⌊a⌋, ⌊γ * a⌋, ⌊γ ^ 2 * a⌋, ..., ⌊γ ^ i * a⌋, ....

Equations
Instances For
    noncomputable def Erdos354.FloorMultiples.interleave (a b γ : ) (n : ) :

    The sequence ⌊a⌋, ⌊b⌋, ⌊γ * a⌋, ⌊γ * b⌋, ... ⌊γ ^ i * a⌋, ⌊γ ^ i * b⌋, ...

    Equations
    Instances For
      theorem Erdos354.erdos_354.parts.i :
      (∀ α > 0, β > 0, Irrational (α / β)IsAddCompleteNatSeq' (FloorMultiples.interleave α β 2)) sorry

      Let $\alpha,\beta\in \mathbb{R}_{>0}$ such that $\alpha/\beta$ is irrational. Is [{ \lfloor \alpha\rfloor,\lfloor \gamma\alpha\rfloor,\lfloor \gamma^2\alpha\rfloor,\ldots}\cup { \lfloor \beta\rfloor,\lfloor \gamma\beta\rfloor,\lfloor \gamma^2\beta\rfloor,\ldots}] complete?

      theorem Erdos354.erdos_354.parts.ii :
      (∃ γSet.Ioo 1 2, α > 0, β > 0, Irrational (α / β)IsAddCompleteNatSeq' (FloorMultiples.interleave α β 2)) sorry

      Let $\alpha,\beta\in \mathbb{R}_{>0}$ such that $\alpha/\beta$ is irrational. Is [{ \lfloor \alpha\rfloor,\lfloor \gamma\alpha\rfloor,\lfloor \gamma^2\alpha\rfloor,\ldots}\cup { \lfloor \beta\rfloor,\lfloor \gamma\beta\rfloor,\lfloor \gamma^2\beta\rfloor,\ldots}] complete?