Documentation

FormalConjectures.ErdosProblems.«348»

Erdős Problem 348 #

Reference: erdosproblems.com/348

@[reducible, inline]

A sequence of naturals is complete if any positive natural can be written as a finite sum of distinct values in the sequence.

Equations
Instances For
    theorem erdos_348 :
    {x : × | ∃ (m : ) (n : ) (_ : m < n) (a : ) (_ : Monotone a) (_ : ∀ (s : Finset ), s.card = mFunction.IsCompleteNatSeq (Function.updateFinset a s 0)) (_ : ∀ (t : Finset ), t.card = n¬Function.IsCompleteNatSeq (Function.updateFinset a t 0)), (m, n) = x} = sorry

    For what values of $0 \leq m < n$ is there a complete sequence $A = \{a_1 \leq a_2 \leq \cdots\}$ of integers such that

    1. $A$ remains complete after removing any $m$ elements, but
    2. $A$ is not complete after removing any $n$ elements.