Documentation

FormalConjectures.ErdosProblems.«347»

Erdős Problem 347 #

Reference: erdosproblems.com/347

theorem erdos_347 :
(∃ (a : ), Monotone a Filter.Tendsto (fun (n : ) => (a (n + 1)) / (a n)) Filter.atTop (nhds 2) ∀ (ι : ), (Set.range ι).Finite(subsetSums (Set.range (a ι))).HasDensity 1) sorry

Is there a sequence $A=\{a_1\leq a_2\leq \cdots\}$ of integers with [\lim \frac{a_{n+1}}{a_n}=2] such that [P(A')= \left{\sum_{n\in B}n : B\subseteq A'\textrm{ finite }\right}] has density $1$ for every cofinite subsequence $A'$ of $A$?