Documentation

FormalConjectures.ErdosProblems.«321»

Erdős Problem 321 #

Reference: erdosproblems.com/321

noncomputable def Erdos321.R (N : ) :

Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$.

Equations
Instances For
    theorem Erdos321.erdos_321 (N : ) :
    R N = sorry

    Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$. What is $R(N)$?

    theorem Erdos321.erdos_321.variants.isTheta :
    (fun (N : ) => (R N)) =Θ[Filter.atTop] sorry

    Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$. What is $\Theta(R(N))$?

    theorem Erdos321.erdos_321.variants.isBigO :
    (fun (N : ) => (R N)) =O[Filter.atTop] sorry

    Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$. Find the simplest $g(N)$ such that $R(N) = O(g(N))$.

    theorem Erdos321.erdos_321.variants.isLittleO :
    (fun (N : ) => (R N)) =o[Filter.atTop] sorry

    Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$. Find the simplest $g(N)$ such that $R(N) = o(g(N))$.

    theorem Erdos321.erdos_321.variants.lower (N k : ) (hk : 4 k) (hkN : k Real.log^[k] N) :
    N / Real.log N * iFinset.Icc 3 k, Real.log^[i] N (R N)

    Let $R(N)$ be the maximal such size. Results of Bleicher and Erdős from [BlEr75] and [BlEr76b] imply that $$ \frac{N}{\log N} \prod_{i=3}^{k} \log_i N \le R(N), $$ valid for any $k \ge 4$ with $\log_k N \ge k$ and any $r \ge 1$ with $\log_{2r} N \ge 1$. (In these bounds $\log_i n$ denotes the $i$-fold iterated logarithm.)

    [BlEr75] Bleicher, M. N. and Erdős, P., The number of distinct subsums of $\sum \sb{1}\spN\,1/i$. Math. Comp. (1975), 29-42. [BlEr76b] Bleicher, Michael N. and Erdős, Paul, Denominators of Egyptian fractions. II. Illinois J. Math. (1976), 598-613.

    theorem Erdos321.erdos_321.variants.upper (N r : ) (hr : 1 r) (hrN : 1 Real.log^[2 * r] N) :
    (R N) 1 / Real.log 2 * Real.log^[r] N * N / Real.log N * iFinset.Icc 3 r, Real.log^[i] N

    Let $R(N)$ be the maximal such size. Results of Bleicher and Erdős from [BlEr75] and [BlEr76b] imply that $$ R(N) \le \frac{1}{\log 2} \log_r N \left( \frac{N}{\log N} \prod_{i=3}^{r} \log_i N \right), $$ valid for any $k \ge 4$ with $\log_k N \ge k$ and any $r \ge 1$ with $\log_{2r} N \ge 1$. (In these bounds $\log_i n$ denotes the $i$-fold iterated logarithm.)

    [BlEr75] Bleicher, M. N. and Erdős, P., The number of distinct subsums of $\sum \sb{1}\spN\,1/i$. Math. Comp. (1975), 29-42. [BlEr76b] Bleicher, Michael N. and Erdős, Paul, Denominators of Egyptian fractions. II. Illinois J. Math. (1976), 598-613.