Erdős Problem 321 #
Reference: erdosproblems.com/321
Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$.
Equations
Instances For
Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$. What is $R(N)$?
Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$. What is $\Theta(R(N))$?
Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$. Find the simplest $g(N)$ such that $R(N) = O(g(N))$.
Let $R(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that all sums $\sum_{n\in S} \frac{1}{n}$ are distinct for $S\subseteq A$. Find the simplest $g(N)$ such that $R(N) = o(g(N))$.
Let $R(N)$ be the maximal such size. Results of Bleicher and Erdős from [BlEr75] and [BlEr76b] imply that $$ \frac{N}{\log N} \prod_{i=3}^{k} \log_i N \le R(N), $$ valid for any $k \ge 4$ with $\log_k N \ge k$ and any $r \ge 1$ with $\log_{2r} N \ge 1$. (In these bounds $\log_i n$ denotes the $i$-fold iterated logarithm.)
[BlEr75] Bleicher, M. N. and Erdős, P., The number of distinct subsums of $\sum \sb{1}\spN\,1/i$. Math. Comp. (1975), 29-42. [BlEr76b] Bleicher, Michael N. and Erdős, Paul, Denominators of Egyptian fractions. II. Illinois J. Math. (1976), 598-613.
Let $R(N)$ be the maximal such size. Results of Bleicher and Erdős from [BlEr75] and [BlEr76b] imply that $$ R(N) \le \frac{1}{\log 2} \log_r N \left( \frac{N}{\log N} \prod_{i=3}^{r} \log_i N \right), $$ valid for any $k \ge 4$ with $\log_k N \ge k$ and any $r \ge 1$ with $\log_{2r} N \ge 1$. (In these bounds $\log_i n$ denotes the $i$-fold iterated logarithm.)
[BlEr75] Bleicher, M. N. and Erdős, P., The number of distinct subsums of $\sum \sb{1}\spN\,1/i$. Math. Comp. (1975), 29-42. [BlEr76b] Bleicher, Michael N. and Erdős, Paul, Denominators of Egyptian fractions. II. Illinois J. Math. (1976), 598-613.