Documentation

FormalConjectures.ErdosProblems.«319»

Erdős Problem 319 #

Reference: erdosproblems.com/319

theorem Erdos319.erdos_319 (N : ) :
IsGreatest {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x} sorry

What is the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$.

theorem Erdos319.erdos_319.variants.isTheta (N : ) (c : ) (h : ∀ (N : ), IsGreatest {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x} (c N)) :

Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. What is $\Theta(c(N))$?

theorem Erdos319.erdos_319.variants.isBigO (N : ) (c : ) (h : ∀ (N : ), IsGreatest {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x} (c N)) :

Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. Find the simplest $g(N)$ such that $c(N) = O(g(N)).

theorem Erdos319.erdos_319.variants.isLittleO (N : ) (c : ) (h : ∀ (N : ), IsGreatest {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x} (c N)) :

Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. Find the simplest $g(N)$ such that $c(N) = o(g(N)).

theorem Erdos319.erdos_319.variants.lb :
∃ (o : ), o =o[Filter.atTop] 1 ∀ᶠ (N : ) in Filter.atTop, (1 - 1 / Real.exp 1 + o N) * N sSup {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x}

Adenwalla has observed that a lower bound (on the maximum size of $A$) of $$ |A| \geq (1 - \frac{1}{e} + o(1))N $$ follows from the main result of Croot [Cr01].

[Cr01] Croot, III, Ernest S., On unit fractions with denominators in short intervals. Acta Arith. (2001), 99-114.