Erdős Problem 319 #
Reference: erdosproblems.com/319
Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. What is $\Theta(c(N))$?
Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. Find the simplest $g(N)$ such that $c(N) = O(g(N)).
Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. Find the simplest $g(N)$ such that $c(N) = o(g(N)).
Adenwalla has observed that a lower bound of $$ |A| \geq (1 - \frac{1}{e} + o(1))N $$ follows from the main result of Croot [Cr01]
[Cr01] Croot, III, Ernest S., On unit fractions with denominators in short intervals. Acta Arith. (2001), 99-114.