Documentation

FormalConjectures.ErdosProblems.«319»

Erdős Problem 319 #

Reference: erdosproblems.com/319

theorem erdos_319 (N : ) :
IsGreatest {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x} sorry

What is the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$.

theorem erdos_319.variants.isTheta (N : ) (c : ) (h : ∀ (N : ), IsGreatest {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x} (c N)) :

Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. What is $\Theta(c(N))$?

theorem erdos_319.variants.isBigO (N : ) (c : ) (h : ∀ (N : ), IsGreatest {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x} (c N)) :

Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. Find the simplest $g(N)$ such that $c(N) = O(g(N)).

theorem erdos_319.variants.isLittleO (N : ) (c : ) (h : ∀ (N : ), IsGreatest {x : | ∃ (A : Finset ) (_ : A Finset.Icc 1 N) (_ : ∃ (δ : ˣ), nA, (δ n) / n = 0 A'A, A'.NonemptynA', (δ n) / n 0), A.card = x} (c N)) :

Let $c(N)$ be the size of the largest $A\subseteq\{1, ..., N\}$ such that there is a function $\delta : A \to \{-1, 1\}$ such that $$ \sum_{n\in A} \frac{\delta n}{n} = 0 $$ and $$ \sum_{n\in A'}\frac{\delta n}{n} \neq 0 $$ for all non-empty $A'\subsetneq A$. Find the simplest $g(N)$ such that $c(N) = o(g(N)).

theorem erdos_319.variants.lb :
∃ (o : ), (o =o[Filter.atTop] fun (n : ) => 1) ∀ {N : } {A : Finset }, A Finset.Icc 1 N∀ {δ : ˣ}, nA, (δ n) / n = 0(∀ A'A, A'.NonemptynA', (δ n) / n 0) → (1 - 1 / Real.exp 1 + o N) * N A.card

Adenwalla has observed that a lower bound of $$ |A| \geq (1 - \frac{1}{e} + o(1))N $$ follows from the main result of Croot [Cr01]

[Cr01] Croot, III, Ernest S., On unit fractions with denominators in short intervals. Acta Arith. (2001), 99-114.