Erdős Problem 318 #
References:
- erdosproblems.com/318
- [ErSt75] Erdős, P. and Straus, E. G., Solution to Problem 387. Nieuw Arch. Wisk. (1975), 183.
- [Sa75] Sattler, R., Solution to Problem 387. Nieuw Arch. Wisk. (1975), 184-189.
- [Sa82b] Sattler, R., On Erdős property P₁ for the arithmetical sequence. Nederl. Akad. Wetensch. Indag. Math. (1982), 347--352.
- [ErGr80] Erdős, P. and Graham, R., Old and new problems and results in combinatorial number theory. Monographies de L'Enseignement Mathematique (1980).
There exists a set A with positive density that does not have property P₁.
#TODO: prove this lemma by assuming erdos_318.contain_single_even.
Every infinite arithmetic progression has property P₁. This is proved in [Sa82b].