Documentation

FormalConjectures.ErdosProblems.«317»

Erdős Problem 317 #

Reference: erdosproblems.com/317

theorem Erdos317.erdos_317 :
(∃ (c : ), c > 0n1, ∃ (δ : Fin n), δ '' Set.univ {-1, 0, 1} 0 < |k : Fin n, (δ k) / (k + 1)| |k : Fin n, (δ k) / (k + 1)| < c / 2 ^ n) sorry

Is there some constant $c>0$ such that for every $n\geq 1$ there exists some $\delta_k\in \{-1,0,1\}$ for $1\leq k\leq n$ with [0< \left\lvert \sum_{1\leq k\leq n}\frac{\delta_k}{k}\right\rvert < \frac{c}{2^n}?]

theorem Erdos317.erdos_317.variants.claim2 :
(∀ᶠ (n : ) in Filter.atTop, ∀ (δ : Fin n), δ '' Set.univ {-1, 0, 1}|k : Fin n, δ k / (k + 1)| 0|k : Fin n, δ k / (k + 1)| > 1 / ((Finset.Icc 1 n).lcm id)) sorry

Is it true that for sufficiently large $n$, for any $\delta_k\in \{-1,0,1\}$, [\left\lvert \sum_{1\leq k\leq n}\frac{\delta_k}{k}\right\rvert > \frac{1}{[1,\ldots,n]}] whenever the left-hand side is not zero?

theorem Erdos317.claim2_inequality :
∀ᶠ (n : ) in Filter.atTop, ∀ (δ : Fin n), δ '' Set.univ {-1, 0, 1}|k : Fin n, δ k / (k + 1)| 0|k : Fin n, δ k / (k + 1)| 1 / ((Finset.Icc 1 n).lcm id)

Inequality in erdos_317.variants.claim2 is obvious, the problem is strict inequality.

theorem Erdos317.erdos_317.variants.counterexample :
¬∀ (δ : Fin 4), δ '' Set.univ {-1, 0, 1}|k : Fin 4, δ k / (k + 1)| 0|k : Fin 4, δ k / (k + 1)| > 1 / ((Finset.Icc 1 4).lcm id)

erdos_317.variants.claim2 fails for small $n$, for example [\frac{1}{2}-\frac{1}{3}-\frac{1}{4}=-\frac{1}{12}.]